
Solutions to Exercises of Chapters 3, 4 and 5

CHAPTER 3

3.1 The σ-algebra σ(X) consists of all subsets of X(Ω). A set with n elements has precisely
2n subsets. Hence σ(X) consists of 2n sets. Each of these sets can be obtained as follows:
Let x1, . . . , xn be the distinct values of X. Enumerate the binary strings of 0’s and 1’s of
length n and to each of them assign a set from σ(X). The way to do this should be clear
from the following example with n = 3:

000 : {X 6= x1, X 6= x2, X 6= x3} = ∅

001 : {X 6= x1, X 6= x2, X = x3} = {X = x3}
010 : {X 6= x1, X = x2, X 6= x3} = {X = x2}
011 : {X 6= x1, X = x2, X = x3} = {X = x2 or x3}
100 : {X = x1, X 6= x2, X 6= x3} = {X = x1}
101 : {X = x1, X 6= x2, X = x3} = {X = x1 or x3}
110 : {X = x1, X = x2, X 6= x3} = {X = x1 or x2}
111 : {X = x1, X = x2, X = x3} = Ω

3.2 (i) If x1 < x2 then {X ≤ x1} ⊂ {X ≤ x2}.
(ii) limx→−∞ F (x) = limn→−∞ F (n), where n ranges over the integers. But F (n) = P(X ≤
n) decreases as n decreases, and so

lim
n→−∞

F (n) = P
(

⋂

n∈Z

{X ≤ n}
)

= P(∅) = 0.

(iii) Similarly,

lim
n→+∞

F (n) = P
(

⋃

n∈Z

{X ≤ n}
)

= P(Ω) = 1.

(iv)
⋂

n∈N

(−∞, x+ 1/n] = (−∞, x].

3.3 For a ≤ b: (i)
(a, b] = (−∞, b] \ (−∞, a]

and (−∞, a] ⊂ (−∞, b].
(ii) Observe that

(a, b) =
⋃

n∈N

(a, b− 1/n]

and use (i) to get

P(X ∈ (a, b)) = lim
n→∞

(F (b− 1/n) − F (a)) = F (b−) − F (a).

(iii) Observe that

[a, b] =
⋂

n∈N

(a− 1/n, b]

and use (i) to get

P(X ∈ [a, b]) = lim
n→∞

(F (b) − F (a− 1/n)) = F (b) − F (a−).

(iv) Apply (iii) with a = b.
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3.4 The way that F−1 is defined in the lecture notes is:

F−1(t) := inf At, where At := {x ∈ R : F (x) ≥ t}.

By the definition of the infimum of a set of real numbers (the set At, in this case), F−1(t)
is the largest of all numbers c which are lower bounds to the set (the existence of which is
guaranteed by the completeness property of the set of real numbers–a consequence of its
construction):

F−1(t) ≥ c ⇐⇒ x ≥ c for all x ∈ At.

Equivalently,

F−1(t) ≥ c ⇐⇒ for all x < c, x 6∈ At ⇐⇒ for all x < c, F (x) < t.

Instead of saying “for all x < c” we can say “for all x = c− ε with ε > 0”, and so

F−1(t) ≥ c ⇐⇒ F (c− ε) < t for all ε > 0 ⇐⇒ F (c−) < t.

Therefore,
F−1(t) < c ⇐⇒ t ≤ F (c−),

This holds for all t and c and so, by setting t = U , we obtain

P(F−1(U) < c) = P(U ≤ F (c−)) = F (c−),

the latter due to the assumption that U is uniformly distributed on the interval (0, 1). Hence

P(F−1(U) ≤ x) = lim
n→∞

P(F−1(U) < x+1/n) = lim
n→∞

F ((x+1/n)−) = lim
n→∞

F (x+1/n) = F (x).

3.5 The function V : {0, 1}N → R is defined by

V (ω) =

∞
∑

k=1

2ωk3
−k, ω1, ω2, . . . ∈ {0, 1},

and P is a measure on the cylinder-σ-algebra F of {0, 1}N such that

P(ω1 = ε1, . . . , ωn = εn) = 2−n,

for all n ∈ N, and all ε1, . . . , εn ∈ {0, 1}. We consider the distribution function

F (x) = P(V ≤ x)

of V . Define V ′(ω) by

V (ω) =
2ω1

3
+

1

3
V ′(ω).

Observe that the P-law of V ′ is the same as the P-law of V (by considering finite-dimensional
cylinder sets). Suppose x < 1/3. Then

F (x) = P(V ≤ x) = P(ω1 = 0, 1
3V

′ ≤ x) =
1

2
F (3x).

Suppose x > 2/3. Then

F (x) = P(V ≤ x) = P(ω1 = 1, 2
3 + 1

3V
′ ≤ x) =

1

2
F (3(x − 2

3)).
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Observe that it is impossible for V (ω) to be strictly between 1/3 and 2/3. Indeed, if ω1 = 0,
then the maximum value of V (ω) is 1/3 (and this happens when V ′(ω) = 1; if ω1 = 1, the
least value of V (ω) is 2/3. So

{1/3 < V < 2/3} = ∅.

Since

P(V = 1/3) = P(ω1 = 0, V ′ = 1) = P(ω1 = 0, ωn = 1 for all n ≥ 1) = 0,

P(V = 2/3) = P(ω1 = 1, V ′ = 0) = P(ω1 = 1, ωn = 0 for all n ≥ 1) = 0,

we have
P(1/3 ≤ V ≤ 2/3) = 0

and so, for some constant c,

F (x) = c, if 1/3 ≤ x ≤ 2/3.

Since V and 1 − V have the same law we have

c = 1/2.

In other words, if we define the operator Q on [0, 1][0,1] by

Qf(x) =











1
2f(3x), if 0 ≤ x < 1/3

1/2, if 1/3 ≤ x ≤ 2/3
1
2f(3(x− 2/3)), if 2/3 < x ≤ 1,

we have just shown that F satisfies
F = QF.

Now restrict Q onto C[0, 1], the space of continuous functions on [0, 1], equipped with the
usual norm

||f || = max
0≤x≤1

|f(x)|.

Observe that

||Qf || = max
0≤x≤1

|f(x)| = max
0≤x<1/3

|f(x)| ∨ max
1/3≤x≤2/3

|f(x)| ∨ max
2/3<x≤1

|f(x)|

= max
0≤x<1/3

|1
2
f(3x)| ∨ (1/2) ∨ max

2/3<x≤1
|1
2
f(3(x− 2/3))| =

1

2
||f ||.

So Q is a contraction, and so, by completeness of C[0, 1] (this is the analogous of the
completeness as the completeness mentioned in Exercise 3.4), starting from any F0 ∈ C[0, 1],
the sequence defined recursively through

Fn+1 = QFn

converges uniformly to an F ∗ ∈ C[0, 1] which satisfies

QF ∗ = F ∗.

Note that Q is an increasing operator, i.e. if f is increasing function, then so is Qf . There-
fore, the limit is also increasing. So F ∗ is an increasing continuous function. By observing
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that Q is a contraction also on the set D[0, 1] of functions on [0, 1] which have discontinuities
of first kind, and using the fact that F ∈ D[0, 1], we have

F = F ∗

and so F is continuous.

To show that F is not absolutely continuous, we show that

P(V ∈ C) = 1

for some set C ⊂ [0, 1] with Lebesgue measure 0. Let H be a nonempty open subset of [0, 1]
such that

P(V ∈ H) = 0.

(We already saw that H = (1/3, 2/3) is such a set.) Notice that

1

3
H = {x/3 : x ∈ H} ⊂ (0, 1/3),

2

3
+

1

3
H = {(2/3) + x/3 : x ∈ H} ⊂ (2/3, 1).

Hence

P(V ∈ 1
3H) = P(ω1 = 0, 1

3V
′ ∈ 1

3H) =
1

2
P(V ∈ H)

P(V ∈ 2
3 + 1

3H) = P(ω1 = 1, 2
3 + 1

3V
′ ∈ 2

3 + 1
3H) =

1

2
P(V ∈ H)

So, starting with a set H0 = H for which P(V ∈ H) = 0, we can create a family of sets Hn

for which P(V ∈ Hn) = 0, recursively by

Hn+1 =
1

3
Hn ∪

(2

3
+

1

3
Hn

)

, n = 1, 2, . . .

Since the sets 1
3Hn and 2

3 + 1
3Hn are disjoint nonempty open sets, we have that their lengths

add up. But both sets have length equal to a third of the length of Hn. So

|Hn+1| =
2

3
|Hn|,

i.e.
|Hn| = (2/3)n|H0|.

Let
D = ∪∞

n=0Hn,

where H0 = (1/3, 2/3). We have

P(V ∈ D) ≤
∞
∑

n=0

P(V ∈ Hn) =

∞
∑

n=0

0 = 0.

We have |H0| = 1/3, |Hn| = 2n/3n+1. Observe that the Hn are here disjoint. So

|D| =

∞
∑

n=0

|Hn| =

∞
∑

n=0

2n/3n+1 = 1.

Finally, set
C = [0, 1] −D.

We have |C| = 1 − |D| = 0, and P(V ∈ C) = 1 −P(V ∈ D) = 1 − 0 = 1.
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3.6 Y = 1 if and only if X divides 3, and the only possibility isX = 3. So P(Y = 1) = 1/6,
P(Y = 2) = 5/6.

3.7

P(ϕ(X) ≤ t) = P(X ≥ ψ(t)) =

∫ ∞

ψ(t)
f(x)dx.

Taking derivative with respect to t, we find that the density of ϕ(X) equals

d

dt

∫ ∞

ψ(t)
f(x)dx = −ψ′(t)f(ψ(t)).

But ψ is strictly decreasing, so ψ′(t) < 0, and so −ψ′(t) = |ψ′(t)|.

3.8 Let a > 0. The inverse of the function ϕ(u) := u1/a is ψ(y) = ya. We have ψ′(y) =
aya−1. So

fY (y) = fU(ψ(y))ψ′(y) = aya−1.

Clearly, 0 < y < 1 is the range over which f is 6= 0, because ϕ maps the interval (0, 1) to
itself. If a = −b < 0, then ϕ(u) := u−1/b maps (0, 1) into (1,∞). So Y has nonzero density
on (1,∞) and, by the exercise above, the density is given by

fY (y) = fU (ψ(y))|ψ′(y)| = by−b−1.

You should sketch the functions ϕ and ψ in both cases, and see why, qualitatively, the
results are sound, i.e. that the mass gets transferred to the correct places. E.g., the function
Y = U30 has most of its density around 0, while Y = U 1/30 has most of its density around
1.

3.9 Let us write the solution in intuitive terms (using calculus), following, of course, a
method which is totally equivalent to the theory. Let u be mapped to y via y = eu. Then
the mass assigned on an interval of tiny length |du| sitting around the point u is transferred
to an interval of tiny length |dy| sitting around the point y:

fY (y)|dy| = fU (u)|du|

and, since dy
du = eu, we have

fY (y)eu = fU(u),

or

fY (y) = e−u = e− log y =
1

y
.

The range of interest is the image of the interval (0, 1) under the map y = eu, i.e. y ranges
over (e0, e1) = (1, e).

Let us now consider the case y = eau, where a is a real number. The function is one-to-one
for all values of a, so we need not worry about multiple pre-images of a point. Again,

fY (y)|dy| = fU (u)|du|

Here, dy
du = aeau, and so

fY (y)|aeau| = fU(u),
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i.e.

fY (y) =
1

|a|eau .

Let us not forget that we need to express this is a function of y, through y = eau, i.e.

fY (y) =
1

|a|y .

The range of y is the image of (0, 1) under the map y = eau. If a > 0, then y ranges over
(1, ea). If a < 0, then y ranges over (e−|a|, 1). If a = 0 we have a degenerate situation,
because Y = 1 with probability 1 (no density).

3.10 (Note there are some typos in the statement of the exercise.) No sweat here: the
method is as above:

fY (y)|dy| = fX(x)|dx|
We have y = ex/a, where a > 0, so dy

dx = 1
ae
x/a:

fY (y)
1

a
ex/a = fX(x),

fY (y) = e−xae−x/a = ay−a−1.

Here y ranges between 1 and ∞ because y = ex/a maps {x > 0} onto {1 < y <∞}.

3.11 If the function y = ϕ(x) is non-monotonic, then each y may have multiple pre-images.
So an interval of tiny length |dy| located around the point y may be the image of many tiny
intervals located at the points x1, x2, . . ., where the latter are all pre-images of y under the
map y = ϕ(x). Hence the “mass” fY (y)|dy| is the sum of the masses fX(xi)|dx|, i = 1, 2, . . .:

fY (y)|dy| =
∑

i

fX(xi)|dx|.

Let us consider the case Y = X2, where X is uniform on [−1, 1]. Then dy
dx = 2x. There are

2 solutions of the equation y = x2, namely, x1 = +
√
y, x2 = −√

y. So

fY (y) = fX(
√
y)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

x=
√
y

+ fX(−√
y)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

x=−√
y

.

But fX(x) = 1/2, for −1 ≤ x ≤ 1 and
∣

∣

∣

dx
dy

∣

∣

∣

x=
√
y

=
∣

∣

∣

dx
dy

∣

∣

∣

x=−√
y

= 1/(2
√
y), so

fY (y) = 1/(2
√
y), 0 ≤ y ≤ 1.

Alternatively, we can argue directly as follows:

P(X2 ≤ y) = P(−√
y ≤ X ≤ √

y).

So

fY (y) =
d

dy
P(X2 ≤ y) =

d

dy

∫

√
y

−√
y

1

2
dy′ =

1

2
√
y
.
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3.11 In the second case,

Y = X2, where X is uniform on [-1,2]

every y ∈ (0, 1) has two pre-images, x = ±√
y, but every y ∈ (1, 4) has one pre-image,

x = +
√
y. So

fY (y) =











fX(
√
y)
∣

∣

∣

dx
dy

∣

∣

∣

x=
√
y

+ fX(−√
y)
∣

∣

∣

dx
dy

∣

∣

∣

x=−√
y
, 0 < y < 1,

fX(
√
y)
∣

∣

∣

dx
dy

∣

∣

∣

x=
√
y
, 1 < y < 4.

Here fX(x) = 1/3, −1 ≤ x ≤ 2 and
∣

∣

∣

dx
dy

∣

∣

∣
= 1/(2

√
y) in all cases, so

fY (y) =

{

1/(3
√
y), 0 < y < 1,

1/(6
√
y), 1 < y < 4.

The density has a jump at y = 1, and we don’t bother to define its value there: it is irrelevant
because the density is useful only as an object to be integrated. In other words, not defining
the value of a density at finitely many points won’t matter at all.

3.12 Same story here:

fY (y)|dy| = (fX(x1) + fX(x2))|dx|,

where x1, x2 are the two pre-images of y = cosh(x). Here y ranges over [1,∞), and | dydx | =

| sinh(x)| =
√

y2 − 1. The latter follows from the identity cosh2(x) − sinh2(x) = 1. Notice
that |x1| = |x2| = cosh−1(y) and the density of X is symmetric around zero. Hence

fY (y) =
2c

1 + cosh−1(y)2
1

√

y2 − 1
=

c
√

y2 − 1y2 + y3 − y

3.13 We have
P(X = an) = 2−n, n ∈ N.

Therefore,

EX =

∞
∑

n=1

(a/2)n

which is finite iff a/2 < 1. The sum equals a/(2 − a).

3.14 We have
P(X = nk) = cn−2, n ∈ N.

Therefore,

EX =
∞
∑

n=1

cn−(2−k),

and the sum is finite iff 2 − k > 1. (Use, e.g., the ratio test.)
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3.15

E(X;A) =
∑

n∈N

n odd

(a/2)n =

∞
∑

m=0

(a/2)2m+1 =
2a

a2 − 4
.

Setting a = 1 in the above we obtain

P(A) =
∞
∑

m=0

(1/2)2m+1 =
2

3
,

so E(X|A) = E(X;A)/P(A) = 3a/(a2 − 4). The reason that E(X|Ac) = aE(X|A) is
obvious is that X = aξ, where P(ξ = n) = 2−n, n ∈ N, i.e. ξ is a geometric–and hence
memoryless–random variable.

3.16 The solution depends on the way that theory was presented.

3.17

EN =

∞
∑

n=1

ne−λ
λn

n!
= e−λλ

∞
∑

n=1

λn−1

(n− 1)!
= e−λλeλ = λ,

where we used the Taylor expansion of the exponential function.

E(N2 −N) =

∞
∑

n=2

(n2 − n)e−λ
λn

n!
= e−λλ2

∞
∑

n=2

λn−2

(n− 2)!
= e−λλ2eλ = λ2.

Hence E(N 2) = E(N2 −N) + EN = λ2 + λ.
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CHAPTER 4

4.1 We use Chernoff’s inequality as follows:

P(X > na) ≤ E eθX

eθna
,

where θ is a positive constant. Now,

E eθX =
n
∑

k=0

eθk
(

n

k

)

2−k =
n
∑

k=0

(

n

k

)

(eθ2−1)k = (1 + eθ2−1)n.

Hence,

P(X > na) ≤
(

1 + eθ2−1

eaθ

)n

,

and the bound holds for any θ > 0. We can get a value for the bound by choosing some
specific θ, e.g. θ = log 4, which gives (3×4−a)n, or we can be smart and find the best bound
by choosing the value of θ for which the bound is least. To find this θ, take the logarithm of
the expression inside the parenthesis, differentiate with respect to θ, and set the derivative
equal to zero:

0 =
d

dθ
(log(1 + eθ2−1) − aθ) =

eθ2−1

1 + eθ2−1
− a,

whence, eθ =
2a

1 − a
.

For this value, we have

P(X > na) ≤
(

1 + a
1−a

( 2a
1−a )

a

)n

= 2−ana−an(1 − a)−(1−a)n

4.2 This is an exercise about a nonnegative random variable Z for which we know that
EZ = 0. If Z is simple, then it is immediate that P(Z > 0) = 0. For general Z, let Zn be
a sequence of simple random variables such that Zn ↑ Z. Then {Z > 0} = ∪n{Zn > 0} and
since the latter events have P equal to zero, it follows that P(Z > 0) = 0.

Now apply this to the random variable Z = (X −EX)2. We learnt that P(Z = 0) = 1, i.e.
P(X = EX) = 1.

4.3 Let Z = |X −EX|2. Markov’s inequality says

P(Z > t2) ≤ EZ

t2
,

for all t > 0. But
P(Z > t2) = P(|X −EX| > t).

4.4 Just use the binomial theorem:

(a(X −EX) + b(Y −EY ))2 = a2(X −EX)2 + 2ab(X −EX)(Y −EY ) + b2(Y −EY )2
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4.5 Again, use the binomial theorem:

(λX + Y )2 = λ2X2 + 2λXY + Y 2.

Hence
Q(λ) := λ2

EX2 + 2λEXY + EY 2 ≥ 0

for all values of λ. The polynomial Q(λ) is minimised at the λ which solves

0 = Q′(λ) = 2λEX2 + 2EXY,

i.e. for λ = −EXY/EX2. Hence

0 ≤ Q(−EXY/EX2) =
EX2

EY 2 − (EXY )2

EX2
,

which gives the inequality we need.

4.6 Apply the previous inequality to X −EX, Y −EY in lieu of X, Y , respectively.

4.7 Just use the property ex+y = exey of the exponential function.

eθ(a+bX) = eθaeθbX

E eθ(a+bX) = eθaE eθbX = eθaMX(θb).

4.8 If λ > θ,

M(θ) =

∫ ∞

−∞
eθxλe−λxdx = λ

∫ ∞

−∞
e−x(λ−θ)dx =

λ

λ− θ
.

If λ ≤ θ the integral diverges. Now,

M ′(θ) =
λ

(λ− θ)2
, M ′′(θ) =

2λ

(λ− θ)3
,

So,

EX = M ′(0) =
1

λ
, EX2 = M ′′(0) =

2

λ2
, varX = EX2 − (EX)2 =

1

λ2
.

4.9 A necessary condition for the integral defining M(θ), for θ > 0, to converge, is that
the right tail of the density decays exponentially. This is not so for the Cauchy distribution
and so M(θ) = ∞ for θ > 0. By symmetry, M(θ) = M(−θ) for θ < 0, and so M(θ) = ∞,
for all values of θ 6= 0.

4.10 Let Y1, Y2 be real random variables. The modulus inequality is equivalent to

√

EY 2
1 + EY 2

2 ≤ E

√

Y 2
1 + Y 2

2 .

But, by Jensen’s inequality, the square of the right hand side is larger than or equal to
E(Y 2

1 + Y 2
2 ), which proves the inequality.
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4.11 The exponential function satisfies ez+w = ezew for any two complex numbers z, w.

eit(a+bX) = eitaeitbX

E eit(a+bX) = eita E eitbX = eitaϕX(tb).

4.12
∫ 1

0
eitudu =

eit − 1

it
.

If X is uniform on (a, b) then X = (b− a)U + a, where U is uniform on (0, 1).

4.13 We need to show that
∫ ∞

0
eiθxλe−λxdx =

λ

λ− iθ
.

Note that the function f(z) = ez is analytic for all z ∈ C, and has itself as primitive. So
∫

γ
ezdz = eb − ea,

for any simple curve γ with endpoints a, b ∈ C. Let γ be the curve z = −cx, 0 ≤ x ≤ x0,
where c is a fixed complex number. Then

∫

γ
ezdz =

∫ x0

0
e−cx(−c)dx.

Hence
∫ x0

0
e−cxdx =

1 − e−cx0

c
.

If the real part of c is positive, limx0→∞ e−cx0 = 0, and so
∫ ∞

0
e−cxdx =

1

c
,

which gives what we need if we set c = λ− iθ.

4.14 For x ≤ y, both ranging in {1, . . . , 6},

P(X ≥ x, Y ≤ y) = P(x ≤ N1 ≤ y, x ≤ N2 ≤ y) =

(

y − x

6

)2

.

The marginals are as follows:

P(X ≥ x) =

(

6 − x

6

)2

P(Y ≤ y) =

(

y

6

)2

We can work out P(X = x, Y = y) by using the additivity of P, or, simply, by

P(X = x, Y = y) = 2P(N1 = x,N2 = y) = 1/6, x ≤ y.

To find the conditional probabilities, just use division.
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4.15 Just do an integral using Fubini:

a−1 =

∫

0≤x≤1
0≤y≤1

(x+ y2)d(x, y) =

∫

0≤x≤1
dx

∫

0≤y≤1
dy(x+ y2) =

1

2
+

1

3
.

FX,Y (x, y) = a

∫

0≤x′≤x
0≤y′≤y

(x′ + y′2)d(x′, y′) = a
x2

2
y + ax

y3

3
.

P(X > Y ) =

∫

0≤x≤1
0≤y≤1
x>y

a(x+ y2) = a

∫

0≤x≤1
dx

∫

0≤y≤1
dy1(x > y)(x+ y2)

= a

∫

0≤x≤1
x2dx+ a

∫

0≤y≤1
(1 − y)y2dy = a(1

3 + 1
3 − 1

4).

P(X2 > Y ) =

∫

0≤x≤1
0≤y≤1
x2>y

a(x+ y2) = a

∫

0≤x≤1
dx

∫

0≤y≤1
dy1(x2 > y)(x+ y2)

= a

∫

0≤x≤1
x3dx+ a

∫

0≤x≤1

(x2)3

3
dx = a(1

4 + 1
3·7 ).

4.16 We have that X,W are independent exponentials with EX = 2, EW = 1, and
Y = 1

2X − W . As noted, Y ≥ 1
2X, with probability 1. We compute the distribution

function in the form
G(x, y) := P(X > x, Y > y),

because it’s easier to do the integrals. The variable y ranges from −∞ to +∞ because Y
can take negative values.

G(x, y) = P(X > x,X > W + 2y)

=

∫ ∞

0
dw e−w P(X > x,X > 2w + 2y) =

∫ ∞

0
dw e−w P(X > x ∨ (2w + 2y))

=

∫ ∞

0
dw e−w e−[(x/2)∨(w+y)]

This is an easy integral in the variable w, as long as we split it into two integrals: one over
w < (x/2)− y and one over w > (x/2)− y. We here assume (I) that x/2 > y (otherwise the
first integral is vacuus.)

G(x, y) =

∫ (x/2)−y

0
dw e−w e−x/2 +

∫ ∞

(x/2)−y
dw e−w e−w−y

= e−x/2
∫ (x/2)−y

0
dw e−w + e−y

∫ ∞

(x/2)−y
dw e−2w

= e−x/2(1 − e−
x
2
+y) +

1

2
e−ye−x+2y = e−x/2 − 1

2
e−x+y.

If (II) x/2 < y then (x/2) ∨ (w + y) = w + y for all w > 0, and so

G(x, y) =

∫ ∞

0
dw e−w e−w−y =

1

2
e−y.

12



So the answer is:

P(X > x, Y > y) =

{

e−x/2 − 1
2e

−x+y, if x ≥ 2y
1
2e

−y, if x ≤ 2y.

We can also find FX,Y (x, y) using additivity:

1 −G(x, y) = P(X ≤ x or Y ≤ y) = 1 −P(X > x) + 1 −P(Y > y) − FX,Y (x, y).

4.17

E eηX
′+θY ′

= E eη(X+Y )+θ(X−Y ) = E e(η+θ)X+(η−θ)Y

= E e(η+θ)X E e(η−θ)Y

= e(η+θ)
2

e(η−θ)
2

= e2η
2+2θ2 .

Since
e2η

2+2θ2 = e2η
2

e2θ
2

,

X ′, Y ′ are independent, both normal with zero mean and variance 2.

4.18

∞
∑

n=0

e−λ
λn

n!
(eθn) = e−λ

∞
∑

n=0

(λeθ)n

n!
= e−λeλe

θ

= eλ(eθ−1).

See Exercise 5.2 below.
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CHAPTER 5

5.1 This is the same as Exercise 4.1, except that there p was equal to 1/2. The method is
precisely the same.

5.2 We use generating functions:

n
∏

j=1

MXj
(θ) =

n
∏

j=1

exp
(

λj(e
θ − 1)

)

= exp
(

n
∑

j=1

λj(e
θ − 1)

)

,

and the latter is the generating function of a Poisson random variable with rate
∑

j λj.

5.3 A brute-force proof is as follows:

P(X1 = n1, . . . , Xd = nd | X1 + · · · +Xd = n) =
P(X1 = n1, . . . , Xd = nd)

P(X1 + · · · +Xd = n)

=

d
∏

k=1

λnk

k

nk!
e−λk

λn
n! e

−λ
=

n!
∏d
k=1 nk!

d
∏

k=1

(λk/λ)nk =

(

n

n1, . . . , nd

) d
∏

k=1

(λk/λ)nk .

(A proof can also be devised by using Exercise 5.8 below.)

5.4 Since
P(X > k|X > k − 1) = q

we have
P(X > k) = qP(X > k − 1) = q2

P(X > k − 2) = · · · = qk,

and so X is geometric. The values P(X = 1) is called parameter. So the parameter is
P(X = 1) = P(X > 0) −P(X > 1) = q0 − q1 = 1 − q.

5.5

M(θ) = E eθX =

∞
∑

n=1

eθn(1 − p)n−1p = peθ
∞
∑

n=1

((1 − p)eθ)n−1 =
peθ

1 − (1 − p)eθ
.

EX = M ′(0) = 1/p, EX2 = M ′′(0) = (2 − p)/p2, varX = (1 − p)/p2.

5.6 We have

P(X > Y + n,X > Y ) =
∑

k

P(X > k + n,X > k, Y = k)

=
∑

k

P(X > k + n|X > k)P(X > k)P(Y = k)

= P(X > n)
∑

k

P(X > k)P(Y = k)

= P(X > n)P(X > Y ).

14



Dividing by P(X > Y ) we obtain the result. The result can be interpreted as follows: If X
represents the duration of my sleep (which is geometrically distributed) then: given that I
have not waken up by the unknown time Y that an explosion will occur in Australia, my
remaining sleeping time X − Y will be distributed as X, i.e. as if the explosion occur ed
when I went to bed.

5.7 From the formula of density transformation, it is obvious that cX + d has constant
density. Since the function y = cx+d maps the interval [a, b] onto the interval with endpoints
ca+ d and cb+ d, the result follows.

5.8 We can get the answer easily if we think combinatorially. We want to compute

P(A) ≡ P(S1
n = m1, . . . , S

d
n = mn),

for all non-negative integers m1, . . . ,mn adding up to n. The probability that the first m1

of the Uj’s fall in I1 and the next m2 of them in I2, and so on, equals pm1

1 · · · pmd

d . The event
whose probability we just computed is one of the many events comprising A. Each of these
events has exactly the same probability and there are

(

n
m1,...,md

)

such events. Therefore,

P(A) =

(

n

m1, . . . ,md

)

pm1

1 · · · pmd

d .

For the analytically minded, we can verify (and prove) that the result is correct by checking
that the generating functions of both sides are equal. First, for the multinomial, we have

∑

(

n

m1, . . . ,md

)

pm1

1 · · · pmd

d θm1

1 · · · θmd

d = (p1θ1 + · · · + pdθd)
n,

where the sum extends over all non-negative integers m1, . . . ,mn adding up to n, and where
we have used the multinomial theorem. Second, for the probability we are seeking, we have

∑

P(S1
n = m1, . . . , S

d
n = mn)θ

m1

1 · · · θmd

d = E
[

θ
S1

n

1 · · · θS
d
n

d

]

,

where the sum extends over the same region as before. The latter further equals

E

d
∏

r=1

n
∏

j=1

θ
1(Uj∈Ir)
r = E

n
∏

j=1

d
∏

r=1

θ
1(Uj∈Ir)
r =

n
∏

j=1

E

d
∏

r=1

θ
1(Uj∈Ir)
r

The function inside the expectation is a function of Uj only and is a simple function: it

takes value θr with probability pr; therefore it has expectation
∑d

r=1 prθr. Hence the two
generating functions agree.

5.9 First note that, with probability 1, all random variables are distinct. There are d!
ways to order U1, . . . , Ud. Since the probabilities of each order are equal and since the
probabilities add up to 1, it follows that the probability of a specific order is 1/d!. So
P(U1 < · · · < Ud) = 1/d!.
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5.10 If X,Y,Z are the lengths of the sticks then X + Y + Z = 1, and the sticks form a
triangle1 if (from Euclidean Geometry) each of the sticks has length smaller than the sum
of the lengths of the other two:

X ≤ Y + Z

Y ≤ Z +X

Z ≤ X + Y.

The model for stick breaking is, undoubtedly, as follows: Let the stick be the interval
[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Pick two i.i.d. random variables B1, B2, uniformly distributed
in this interval. These represent the break points. Let U = B1 ∧ B2, V = B1 ∨ B2. The
intervals [0, U ], [U, V ], [V, 1] represent the three smaller sticks, and have lengths X = U ,
Y = V − U , Z = 1 − V . Therefore the above inequalities are written as

U ≤ 1/2

V − U ≤ 1/2

V ≥ 1/2.

We thus need to compute the probability

p = P(U ≤ 1/2, V ≥ 1/2, V − U ≤ 1/2).

Since X1, X2 are interchangeable,

p = 2P(X1 ≤ X2, X1 ≤ 1/2, X2 ≥ 1/2, X2 −X1 ≤ 1/2).

Since (X1, X2) is uniformly distributed in the square [0, 1]2, it’s obvious that p/2 is the area
of the set

{(x1, x2) ∈ [0, 1]2 : x1 ≤ x2, x1 ≤ 1/2, x2 ≥ 1/2, x2 − x1 ≤ 1/2},

which is a right isosceles triangle two sides of which have length 1/2 and thus its area is
1/8. Hence p = 1/4.

5.11 We give the intuition behind this identity in law. Imagine you have d alarms in your
bedroom, each set to ring at an exponential time with rate 1 (hour−1, say). The alarms
function independently of one another. (This ensures that you will, at some point, get out
of bed.) The first alarm will ring at a time (the minimum of d i.i.d. exponential random
variables) which is exponentially distributed with rate the sum of the rates, i.e. rate d. In
other words, the first alarm rings at time X1/d, where X1 is an exponential random variable
with rate 1. After the first alarm rings, there are d− 1 alarms remaining. Note two things:
(i) by the memoryless property, the remaining times are independent of the first ring and (ii)
they are independent of the first ring. Therefore, the second alarm will ring at a remaining
time which is exponential with rate d − 1. In other words, the second alarm rings at a
time X2/d− 1 (where X2 is an exponential random variable with rate 1) after the first ring.
Thus, the second alarm rings at time distributed like

X1

d
+

X2

d− 1

1Euclid (ca. −300): Elements, Alexandria.
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where X1, X2 are i.i.d. Exp(1). Continuing in this manner, we see that the d-th alarm will
ring at time

X1

d
+

X2

d− 1
+ · · · + Xd−1

2
+Xd,

where X1, . . . , Xd are i.i.d. Exp(1).

You can make the argument formal by first proving the analogue of Exercise 5.6, namely
that if X,Y are independent positive random variables, with X being exponential, then

P(X − Y > t|X > Y ) = P(X > t),

for all t > 0, and then by using induction.

5.12 This follows immediately from Exercise 3.4. But let’s prove it directly.

P(− lnU/λ > t) = P(U < e−λt) = e−λ,

because U is uniform.

5.13 This is called regenerative property of the Gamma function. We have

Γ(β) =

∫ ∞

0
yβ−1(−e−y)′dy = [yβ−1e−y]∞0 −

∫ ∞

0
(−e−y)(yβ−1)′dy

=

∫ ∞

0
e−y(β − 1)yβ−2dy = (β − 1)Γ(β − 1).

A few remarks on rigour: We take β > 1, so that is why the value of yβ−1e−y at y = 0
equals 0. Second, yβ−1e−y → 0, as y → ∞, that is why [yβ−1e−y]∞0 = 0. Third, all integrals
in the derivation above converge.

5.14 We have

Γ(1/2) =

∫ ∞

0
y−1/2e−ydy.

Change variable by
y = x2/2

so that

y−1/2 =

√
2

x
, e−y = e−x

2/2, dy = xdx.

Then

Γ(1/2) =
√

2

∫ ∞

0
e−x

2/2 =
√

2
√

2π
1√
2π

∫ ∞

0
e−x

2/2 = 2
√
πP(N > 0),

where N is a standard normal random variable. So P(N > 0) = 1/2, and the result follows.
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5.15 Here X has law Γ(β, λ), where β, λ > 0. Picking θ small enough so that the integral
below converges (we will see later how small), we have

MX(θ) =

∫

eθx
λβ

Γ(β)
xβ−1e−λxdx

=
λβ

Γ(β)

∫

xβ−1e−(λ−θ)xdx

=
λβ

Γ(β)

1

(λ− θ)β

∫

yβ−1e−ydy

=
λβ

Γ(β)

1

(λ− θ)β
Γ(β)

=

(

λ

λ− θ

)β

.

Looking at the second line above, we see that the integral converges for all θ ∈ (−∞, λ),
and diverges if θ ≥ λ.

Compute a couple of derivatives:

M ′(θ) = β

(

λ

λ− θ

)β−1 λ

(λ− θ)2

M ′′(θ) =

(

λ

λ− θ

)β

β2 (λ− θ)−2 +

(

λ

λ− θ

)β

β (λ− θ)−2

Set θ = 0:

EX = M ′(0) =
β

λ
, EX2 =

β2

λ2
+
β

λ
.

5.16 Let (see Exercise 5.15)

Mβ,λ(θ) =

(

λ

λ− θ

)β

be the generating function of a Γ(β, λ) probability measure. Then

Mβ1,λ(θ)Mβ2,λ(θ) =

(

λ

λ− θ

)β1+β2

= Mβ1+β2,λ(θ),

and this proves the claim, because the generating function (being a Laplace transform)
characterises the measure.

5.17 By changing variable t = x/
√

2, it is enough to prove that

I :=

∫ ∞

−∞
e−t

2

dt =
√
π,

But

I2 =

(
∫ ∞

−∞
e−x

2

dx

)(
∫ ∞

−∞
e−y

2

dy

)

and, by Fubini’s theorem,

I2 =

∫

R2

e−(x2+y2)d(x, y).
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Since the function to be integrated is rotationally invariant on the plane, we use polar
coordinates, i.e.

x = r cos θ, y = r sin θ, r > 0, 0 ≤ θ < 2π.

Since x2 + y2 = r2, and since d(x, y) = rd(ρ, θ), we have

I2 =

∫

R2

e−r
2

rd(r, θ).

Using Fubini’s theorem once more,

I2 =

∫ ∞

0
dr r e−r

2

∫ 2π

0
dθ = 2π

∫ ∞

0

1
2se

−sds = π.

So, clearly,2 I =
√
π,

5.18 First, complete the square in the exponent:

1
2x

2 − θx = 1
2 (x2 − 2θx+ θ2 − θ2) = 1

2(x− θ)2 − 1
2θ

2.

Therefore,

MX(θ) =
1√
2π

∫ ∞

−∞
e−

1
2 (x−θ)2+

1
2 θ

2

dx

= e
1
2 θ

2 1√
2π

∫ ∞

−∞
e−

1
2 (x−θ)2dx

= e
1
2 θ

2 1√
2π

∫ ∞

−∞
e−

1
2y

2

dy

= e
1
2 ,

because the last integral is the integral of a standard normal density, and hence it equals 1.

5.19 Recall the “stability property” of the Gamma distribution, namely, if Xβj ,λ, j = 1, 2
are independent random variables with laws Γ(βi, λ), respectively, then Xβ1,λ + Xβ2,λ has
law Γ(β1 + β2, λ).

Here, Y 2
1 , Y 2

2 are independent, both with law Γ(1/2, 1/2). Hence Y 2
1 +Y 2

2 has law Γ(1, 1/2) =
Exp(1/2).

5.20 This requires reviewing the material you learnt and just summarising in an artsy
manner.

2Lord Kelvin (1824-1907) was an admirer of Joseph Liouville. It is said that, one day, while Kelvin
was lecturing in Glasgow, he asked his class: ‘Do you know what a mathematician is?’ He then wrote the
following equation on the blackboard

Z

∞

−∞

e
−x2

dx =
√

π,

and said: ‘A mathematician is one to whom that is as obvious as that 2 × 2 = 4 is to you; Liouville was a
mathematician.’
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5.21 Let U = X + 2Y , V = 3X − 4Y . We want to compute E(U |V ). We know that
1) E(U |V ) = cV , for some constant c,
2) U −E(U |V ) is independent of V .
Therefore U − cV and V are uncorrelated:

0 = E((U − cV )V ) = EUV − cE V 2,

whence

c =
EUV

EV 2
.

We have

EUV = E(X + 2Y )(3X − 4Y ) = 3EX2 − 8EY 2 + 0 = 3 − 8 = −5,

EV 2 = E(3X − 4Y )2 = 9EX2 + 16E Y 2 + 0 = 25.

So c = −5/25 = −1/5, and so E(U |V ) = −V/5.
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